Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
ap(ap(f, x), x) → ap(ap(x, ap(f, x)), ap(ap(cons, x), nil))
ap(ap(ap(foldr, g), h), nil) → h
ap(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → ap(ap(g, x), ap(ap(ap(foldr, g), h), xs))
Q is empty.
↳ QTRS
↳ Overlay + Local Confluence
Q restricted rewrite system:
The TRS R consists of the following rules:
ap(ap(f, x), x) → ap(ap(x, ap(f, x)), ap(ap(cons, x), nil))
ap(ap(ap(foldr, g), h), nil) → h
ap(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → ap(ap(g, x), ap(ap(ap(foldr, g), h), xs))
Q is empty.
The TRS is overlay and locally confluent. By [15] we can switch to innermost.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
ap(ap(f, x), x) → ap(ap(x, ap(f, x)), ap(ap(cons, x), nil))
ap(ap(ap(foldr, g), h), nil) → h
ap(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → ap(ap(g, x), ap(ap(ap(foldr, g), h), xs))
The set Q consists of the following terms:
ap(ap(f, x0), x0)
ap(ap(ap(foldr, x0), x1), nil)
ap(ap(ap(foldr, x0), x1), ap(ap(cons, x2), x3))
Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
AP(ap(f, x), x) → AP(x, ap(f, x))
AP(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → AP(g, x)
AP(ap(f, x), x) → AP(ap(cons, x), nil)
AP(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → AP(ap(g, x), ap(ap(ap(foldr, g), h), xs))
AP(ap(f, x), x) → AP(ap(x, ap(f, x)), ap(ap(cons, x), nil))
AP(ap(f, x), x) → AP(cons, x)
AP(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → AP(ap(ap(foldr, g), h), xs)
The TRS R consists of the following rules:
ap(ap(f, x), x) → ap(ap(x, ap(f, x)), ap(ap(cons, x), nil))
ap(ap(ap(foldr, g), h), nil) → h
ap(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → ap(ap(g, x), ap(ap(ap(foldr, g), h), xs))
The set Q consists of the following terms:
ap(ap(f, x0), x0)
ap(ap(ap(foldr, x0), x1), nil)
ap(ap(ap(foldr, x0), x1), ap(ap(cons, x2), x3))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
Q DP problem:
The TRS P consists of the following rules:
AP(ap(f, x), x) → AP(x, ap(f, x))
AP(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → AP(g, x)
AP(ap(f, x), x) → AP(ap(cons, x), nil)
AP(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → AP(ap(g, x), ap(ap(ap(foldr, g), h), xs))
AP(ap(f, x), x) → AP(ap(x, ap(f, x)), ap(ap(cons, x), nil))
AP(ap(f, x), x) → AP(cons, x)
AP(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → AP(ap(ap(foldr, g), h), xs)
The TRS R consists of the following rules:
ap(ap(f, x), x) → ap(ap(x, ap(f, x)), ap(ap(cons, x), nil))
ap(ap(ap(foldr, g), h), nil) → h
ap(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → ap(ap(g, x), ap(ap(ap(foldr, g), h), xs))
The set Q consists of the following terms:
ap(ap(f, x0), x0)
ap(ap(ap(foldr, x0), x1), nil)
ap(ap(ap(foldr, x0), x1), ap(ap(cons, x2), x3))
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
AP(ap(f, x), x) → AP(x, ap(f, x))
AP(ap(f, x), x) → AP(ap(cons, x), nil)
AP(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → AP(g, x)
AP(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → AP(ap(g, x), ap(ap(ap(foldr, g), h), xs))
AP(ap(f, x), x) → AP(ap(x, ap(f, x)), ap(ap(cons, x), nil))
AP(ap(f, x), x) → AP(cons, x)
AP(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → AP(ap(ap(foldr, g), h), xs)
The TRS R consists of the following rules:
ap(ap(f, x), x) → ap(ap(x, ap(f, x)), ap(ap(cons, x), nil))
ap(ap(ap(foldr, g), h), nil) → h
ap(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → ap(ap(g, x), ap(ap(ap(foldr, g), h), xs))
The set Q consists of the following terms:
ap(ap(f, x0), x0)
ap(ap(ap(foldr, x0), x1), nil)
ap(ap(ap(foldr, x0), x1), ap(ap(cons, x2), x3))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 3 less nodes.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
AP(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → AP(g, x)
AP(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → AP(ap(g, x), ap(ap(ap(foldr, g), h), xs))
AP(ap(f, x), x) → AP(ap(x, ap(f, x)), ap(ap(cons, x), nil))
AP(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → AP(ap(ap(foldr, g), h), xs)
The TRS R consists of the following rules:
ap(ap(f, x), x) → ap(ap(x, ap(f, x)), ap(ap(cons, x), nil))
ap(ap(ap(foldr, g), h), nil) → h
ap(ap(ap(foldr, g), h), ap(ap(cons, x), xs)) → ap(ap(g, x), ap(ap(ap(foldr, g), h), xs))
The set Q consists of the following terms:
ap(ap(f, x0), x0)
ap(ap(ap(foldr, x0), x1), nil)
ap(ap(ap(foldr, x0), x1), ap(ap(cons, x2), x3))
We have to consider all minimal (P,Q,R)-chains.